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Propagation of internal gravity waves in fluids 
with shear flow and rotation 
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In  a rotating system, the vertical transport of angular momentum by internal 
gravity waves is independent of height, except at  critical levels where the Doppler- 
shifted wave frequency is equal to plus or minus the Coriolis frequency. If slow 
rotation is ignored in studying the propagation of internal gravity waves through 
shear flows, the resulting solutions are in error only a t  levels where the Doppler- 
shifted and Coriolis frequencies are comparable. 

1. Introduction 
Recently Booker & Bretherton (1967) analysed the propagation of internal 

gravity waves through critical levels of a fluid in shear flow. (A critical level is the 
level at  which fluid velocity equals wave horizontal phase velocity: the wave 
equation is singular at this level.) They considered a Boussinesq inviscid adiabatic 
fluid in a non-rotating system and concluded that when the Richardson number is 
greater than $ the waves are attenuated as they pass through the critical level. 
They also found that the vertical flux of horizontal momentum, constant else- 
where in the fluid (Eliassen & Palm 1961), is discontinuous at the singular level, 
indicating a transfer of momentum to the mean flow at that point. 

When these analyses are applied to geophysical problems an important as- 
sumption must be recognized: the rotation of the fluid has been taken to have 
negligible influence. It is not sufficient that the wave frequency as observed at  
the ground or some reference frame moving with the fluid be large compared to 
the rotational frequency for this to be valid. In  the vicinity of a critical level, the 
Doppler-shifted wave frequency, as observed by a fluid parcel, tends to zero and 
must inevitably be small compared to any rotation frequency. 

In  fact, the singularities of a rotating system differ from those of a non- 
rotating system both in number and form; there are critical levels when the Dop- 
pler-shifted frequency equals plus or minus the Coriolis frequency as well as 
zero. It is not a priori evident that a wave passing through this group of critical 
levels will respond as though it had encountered the single critical level of the 
corresponding non-rotating atmosphere. 

In  addition, the vertical flux of horizontal momentum is not conserved in a 
rotating system, and thus its use as a measure of wave intensity (Booker & 
Bretherton 1967) is somewhat obscured. 

This study has two objectives. The first is to define a flux, analogous to the 
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momentum flux, which i s  conserved in a rotating system. It will turn out that this 
may be thought of as a vertical transport of angular momentum. 

The second objective is to show that the solutions to the rotating system ap- 
proach asymptotically those of the non-rotating system sufficiently far on either 
side of the critical levels, though their behaviour in the vicinity of such levels is 
quite dissimilar. 

Together these results support more rigorously the approximation of neglect- 
ing rotation for higher frequency internal gravity waves and define more pre- 
cisely when this approximation is valid. 

2. Derivation of the wave equation 
We shall make use of a model which is planar, Boussinesq, inviscid, and adia- 

batic, and with rotation about a vertical axis. Let the fluid have a mean density 
po with the vertical structure 

a lnp,/az = - p, 
and a mean velocity uo(z)  in the x direction. The fluid has a mean angular velocity 
!2 about the vertical. We shall assume there is a sinusoidal wave of small ampli- 
tude so that wave perturbation parameters have the form 

q(x, y, 2, t )  = @ ( z ) p i ( w ~ + k ~ : + l ~ ) .  

In  other words, we are dealing with a single Fourier component in time and the 
horizontal directions. 

The perturbation equations of motion are : 

Here u, v and w are the x, y and z velocities, p is pressure, p density and g the 
gravitational acceleration. Perturbation quantities are given without sub- 
scripts, zero-order quantities with the subscript 0. The incompressibility of a 
Boussinesq fluid B ( p  +po)/f)t = 0 yields 

and the conservation of mass requires 

au av au? 

ax ay a2 
-+-+- = 0. 

The mean density is gravitationally stratified in the vertical, and, as a mani- 
festation of the thermal wind equation, shows a variation in the y direction. For 
geostrophio balance, 

33 = -2nu,p, (7) 
a Y  
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and for hydrostatic balance 

aP0 

az 
- = -gp,. 

Taking a/& of (7 )  and a/ay of (8), we find 

ZQdu, 3Qpu, -- ape= _ _ _ ~ .  
Po aY g dz g 

The last term of (9) is negligible in the Boussinesq approximation. 
Equations (1) to (9) can be combined to yield the wave equation 

- [ (w  + ku,) k + iZQZ]  -0 w = 0. 
d2u dz2 I 

44 1 

(8) 

(9) 

This is a minor generalization of the wave equation derived by Eady (1949), 
who made the additional approximations that the shear rate is constant, and that 
the wave is also in hydrostatic balance. (These approximations drop the term 
involving the second derivative of u, and the term - (w  + (k2 + Z2) w, re- 
spectively.) Equation (10) is singular if (w  + ku,) = 0, ZQ, or - ZQ. Other wave 
parameters are related to w: 

9 (11) 
i [ ( w  + ku,) k + iZQZ]  ( d ~ , / d ~ )  w - i [ ( w  + k ~ , ) ~  - 4Q2] (dw/dz) 

(w + ku,) (k2 + Z2) P =  

iZ2(du0/dz) w + i [ ( w  + ku,) k - iZQZ] (dwldz) 
(w + ku,) (k2 + Z2) 

- ikZ(du,/dx) w - [2Qk - iZ(w + ku,)] (dwldz) 
(0 + ku,) ( k2 + Z2) 

U =  7 

V =  3 

* (14) 
- ipw 

(w + ku,) 
ZQkZ(duo/d~)  w - iZQ[ZQk - i(0 + ku,) I] (du,/dx) (dw/dz) 

g(w+ku,)2(k2+Z2) 
+ P =  

If and 7 are respectively the x and y displacements of a fluid parcel from its rest 
position, 

, (15) 
P(du,/dx) w + [ (w  + ku,) k - iZQZ]  (dwldz) 

(w + kU,)2 ( k 2  + Z2) f [ =  

(16) 
- kZ(du,/dz) w + i[ZQk - iZ(w + ku,)] (dwldz) 

(k2 + 12)  (w + kwo)2 7 =  

3. Angular momentum flux 
The equations of motion presume rotation about some vertical axis, but do not 

depend on the specific location of that axis. Let the mean position of a fluid parcel 
be at X, ,  Yo, Z,, and its instantaneous horizontal displacement from this posi- 
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tion be t, y. Let the axis of rotation be located at the origin. Then the instan- 
taneous angular momentum per unit volume of the fluid parcel is 

[(XO + El2 + (Y, + TI2] Q + (XO + 5) - (Yo + 7) (uo + u) 
N (Xi+Yo)2 Q - Y o ~ o + X o ( ~ +  S Q t )  -Y0(u - ~ Q v ) ,  (17) 

to first order and making the approximation that uo << 2Q&. If (17) is multiplied 
by pow and a time average is taken, the resultant mean vertical flux of angular 
momentum is 

P O X O ( V  + 2Qt )w - Po Yo@ - 2Qq)w 
= +poXoRew*(v+2Q~)-~po&Rew*(u-2Qy), (18) 

where an overbar denotes a time average for the parcel and w* is the complex 
conjugate of w. By substitution of (12), (13), (15) and (16), we find 

and 

I Re w*(v + 2Q4) = ~ 

k 
Rew"(u-2Qy) = ~ 

(k2+12) 

(12 + k2) G ,  

2Q1 duoww*+ i [ ( w  + k ~ , ) ~  - 4Q2] 
( ( w  + kuo)2 dx (w + kU,)2 d z  

where G = Re 

If one differentiates (21) with respect to z ,  and substitutes (10) into the result, 
then, providing k, I ,  w and Q are all real, the result is 

dG/dz = 0. (22) 

Thus Re w*(v+ ZQt), Re w*(u- 2Qy) and the vertical flux of angular mo- 
mentum are constant with height for a real frequency and horizontal wave- 
number. This is true at  any level except at singular levels, where substitution of 
(10) is invalid. 

We also note that 
lim Rew*(v+2Qt)+Rew*v (23) 

and lim Re w*(u - 2Qy) +Re w*u, (24) 

I(w+ku,l2Sll+m 

I(w+ku,)/ZSll-tm 

so that, far away from the singular levels, the vertical transports of angular and 
linear momentum are almost equivalent, and the latter is almost constant. 

4. Asymptotic solutions to the wave equation 
With the aid of two further assumptions, it is a straightforward process to 

obtain asymptotic solutions to (10) in regions well away from its singular points. 
We shall assume that: (i) the velocity shear, duo/&, is constant with height, 
(ii) the Doppler-shifted frequency (w + ku,) is of small magnitude compared to 
the Brunt frequency, (g/3)4, 

Without any loss of generality, we can take z = 0 at the height at  which 
(w+kuo) = 0 and write (10) as 
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Power series solutions for (25 )  in descending powers of z may be obtained; 
g = l / z  is substituted and the resulting equation can be solved in a power series 
expansion about y = 0 by the method of Frobenius. The expansion is valid in the 
range 

The resulting expansion, in terms of z, is 

w = aOza[ l  + c ~ ~ 2 - l  + a2zF2 + . . .] + b,zb[ 1 + b , ~ - l +  b , ~ - ~  + . . .], (27 )  

where a, and b, are arbitrary integration constants, 

J’ = g f l ( l + $ / ( % ) 2 ,  a, = b, = - isll 
k2(dUo/dZ) ’ 

-; ( a + 3 )  __ _ -  l2 ( a + 2 ) ,  - b ( b + 3 )  - -- l2 ( b + 2 )  - 
a - -  2 a + 3  k2 2 a + 3  b 2 = 2  2 b + 3  k2 2 b + 3  * 

J‘ is a modified Richardson number. The coefficients a and b are in general of 
magnitude unity or a little larger. Therefore, if z is such that 

equation (27 )  is approximately 

In the absence of rotation, (25 )  becomes 

d2W 
z2-+ J’w = 0, 

az2  

with the solutions w = c3z4+ir + c4z+-ir, (32 )  

where c3 and c4 are again integration constants. 
Let us prescribe boundary conditions at  point A ,  say, of figure 1, so that the 

integration constants a, and b, of (27 )  are known. If we can follow a path, such as 
the dotted line, through the (shaded) region of validity of (27 )  in the complex 
z-plane we can use this equation to determine w at  A’. 

To the extent that (30) is a valid approximation for (27 )  along this path, that is 
to the extent that inequality (29 )  holds, the solutions at  A with and without rota- 
tion will be identical. This follows from the similarity of (30 )  and (31 ) .  Inequality 
(29 )  can be met increasingly well as A and A’ are moved away from the singular 
points. 

In  integrating (25 )  or (31 )  through singularities, it is necessary to determine 
whether to pass above or below the singularity in the complex plane. Booker & 
Bretherton present causality arguments in favour of the addition of a small 
negative imaginary component to w ;  as a result the integration is carried below 
the singularities. (The same result is also justifiable on the basis of Rayleigh 
damping. See appendix.) 
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The same argument can be applied here. Thus the path of integration is shown 
by the solid curve A-A' of figure 1. As the integration path lies below the singu- 
larities, 

x 21 Izle--in (z  < 0). (33) 

FIGURE 1. Paths of integration in the complex z-plane around the singularities ( 0 )  of 
(25). Shaded area is region of validity Of asymptotic solution given by (27). 

It is also possible to obtain power series expansions of (10) about its singularities 
is the vertical distance from the height at  which at w + kuo = 0, 2Q, - 2Q. If 

w + ku, = 0, then in this neighbourhood 

w = c,P+ O('51)l + C & [ l +  O(<l)l. (34) 
If this is inserted into (21), one finds that the leading term in a power series for G 
is a constant, continuous across the discontinuity. (Higher powers of must of 
course cancel for real k ,  1 and w . )  In  this case G and the angular momentum trans- 
port are continuous across the discontinuity. 

If instead t2 is the distance to the level at  which w + ku, = 2Q, the series solu- 
tions in this neighbourhood are 

w = c,[l + 0 ( < 2 ) 1 +  csc:z'"l + O(c2)1, (I * 0); (35) 

or w = c,[l + o(e,)l +c,oIn<2[1+ 0(,$-2)1, (I = 0). (36) 
Substitution of these expressions in (21) shows that in general G will be dis- 
continuous. A similar result holds for w + k~,+ - 2Q. 

5. A numerical illustration 
Equation (10) was solved numerically by Mr Larry Williams for a specific case 

in order to illustrate the asymptotic behaviour of waves. The problem was non- 
dimensionalized by taking g = 1, /j' = 1. The mean velocity shear was as shown in 
figure 2. In  this example w = - i  x k = 1, 1 = 0, u., = 0.1, 
L = 10-In. Thus the shear at x = 0 corresponded to a Richardson number of one. 

2Q = 
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It was assumed that there was an unspecified source for an upward-propagating 
wave (with i@~ positive) located somewhere remotely in the lower half-space, 
and that there were also a transmitted upward propagation wave in the upper half- 

uo=- v, I- 
FIGURE 2. Mean velocity profile as a function of height for numerical experiment. 

space and a reflected wave in the lower half-space. The transmitted wave was 
arbitrarily set equal to unity at  x = $L, thus giving w and dwldz as two boundary 
conditions. w(z) was computed by using Hamming’s (1959) method, using a grid 
interval Az = 10-5 and the compatible incident and reflected waves obtained in 
the lower half-space. Tests showed that the results were not sensitive either to the 
magnitudes of Az or the imaginary part of o. Incident and reflected wave ampli- 
tudes were obtained for the lower half-space. 

Figures 3 a  and 3 b show the behaviour of W ( Z )  through the shear zone in this 
case and in a similar case where 2Q = 0. Although the waves behave quite differ- 
ently near z = 0, they are quite similar on either side. The ratio of linear momen- 
tum flux in the upper and lower half-spaces is 1 : 238-8 in the rotating case, and 
1 : 23’7.5 in the non-rotating case. (The ratio of angular momentum fluxes in the 
rotating case is the same, 1 : 238.8, since (0 )  - k ~ , ) ~  is the same in both half-spaces.) 

These figures are quite comparable with Booker & Bretherton’s estimates for a 
non-rotating system. These authors find that the momentum flux of an upward- 
going wave is attenuated by a factor e-+@ or 1: 230-8. One referee has kindly 
pointed out that there will be partial reflexions near the ‘knees’ of the mean wind 
profile at  x = & +L of figure 2. Let A be the momentum flux of the upward wave 
mode above x = 0 but below the upper knee, and B be the flux of the downward 
wave in this region. B results from reflexion at the upper knee. Then the net flux 
just above the critical layer is A - B and - A  eZn@ + B e--2n@ will be the flux just be- 
low the critical layer. The magnitude of the momentum flux ratios will then be 
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FIGURE 3. Numerical solutions for w as a function of height z for (a) rotating, and ( b )  
non-rotating model atmospheres. Vertical distances are in units of the density scale height. 
-, IwI; - - - - )  Rew; -.-.-, Imw. 
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The ratio of downgoing to upgoing momentum fluxes in the lower half-space 
is 2.64% for the non-rotating and 2-66y0 for the rotating case. This is a good 
estimate of the reflexion coefficient at  the lower knee and the best estimate 
available for B / A .  We find 

1 : e-2nfl( 1 + 0-0264) N 1 : 236.9. 

Thus the computed flux ratios differ from each other and from a value deter- 
mined from the Booker-Bretherton theory combined with numerical reflexion 
coefficients by factors of the order of 1 yo. One may still be critical and ask what 
the source of these small differences may be. Numerical experiments varying Az 
and also integration using a simpler finite difference scheme change results only 
by small fractions of a per cent. Hence it does not appear that the numerical 
computations per se can account for the differences. However, changes in the 
imaginary part of w produced changes of the order of 1 %  in the numerical 
results. 

It thus appears to us that the discrepancy between momentum flux ratios for 
the numerical and Booker-Bretherton analyses of the non-rotating case arises 
in part through the use of a finite imaginary component of frequency and also in 
part to poor estimates of the partial reflexions of the wave. The further difference 
of the rotating system momentum flux ratio may stem from these sources and 
also from the approximations of our analysis, especially in going from (27)  to 
(30) .  We have not tried to assess the relative importance of these influences. 

6. Conclusions 
In  a rotating system, it is the vertical transport of angular momentum by 

internal gravity waves that is conserved. Rotation of such a system with linear 
velocity shear can be ignored, providing that attention is confined to regions where 
the Doppler-shifted wave frequency, w + kuo, satisfies the relation 

In zones where this condition does not hold, the rotating and non-rotating systems 
may show widely differing solutions which, however, converge on either side of 
the zone. 

Iw + kuol 9 2Q( 1 + P/k2)9. (37) 

Mr Larry Williams developed and programmed the numerical example used 
in this study. Dr Akira Kasahara provided a number of helpful comments during 
the preparation of the manuscript. 

Appendix. Rayleigh damping 
Let us assume that the fluid is no longer inviscid, but has a Rayleigh viscous 

force directly proportional to the fluid velocity, and a mass diffusion loss directly 
proportional to the mass perturbation. Then (2)-(5) become 
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auy aw 1 ap p 1 
- at + u o z  = ---- g---w, 

Poaz Po 71 

aP aP aP0 aP 1 
-+u -+w-+v-o=--p, 
at O a X  ay ay r2 

where 71 and 72 are respectively the viscous and diffusional time constants. If in 
addition r1 = 7 2  = l / w i  = constant, the resulting wave equation is identical to 
(10) except that w must be replaced by w - iw,. 

In  this case, the momentum flux is no longer a constant. Solutions correspond 
to lines of negative wi on figures 1 and 2. If Jwil < l2Ql the influence of rotation is 
negligible. 
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